提示: 欢迎访问OurACM平台。因与高数考试冲突,校赛改为5月6日13:00-17:00
Problem 1025 Mondriaan's Dream

Accept: 199    Submit: 373
Time Limit: 1000 mSec    Memory Limit : 32768 KB

Problem Description

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways.

Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

Input

The input file contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

Output

For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical tilings multiple times.

Sample Input

1 2 1 3 1 4 2 2 2 3 2 4 2 11 4 11 0 0

Sample Output

1 0 1 2 3 5 144 51205

Submit  Back  Status  Discuss