提示: 欢迎访问OurACM平台。
Problem 1061 矩阵连乘

Accept: 468    Submit: 1775
Time Limit: 1000 mSec    Memory Limit : 32768 KB

Problem Description

给定n个矩阵{A1,A2,...,An},考察这n个矩阵的连乘积A1A2...An。由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序,这种计算次序可以用加括号的方式来确定。

矩阵连乘积的计算次序与其计算量有密切关系。例如,考察计算3个矩阵{A1,A2,A3}连乘积的例子。设这3个矩阵的维数分别为10*100,100*5,和5*50。若按(A1A2)A3计算,3个矩阵连乘积需要的数乘次数为10*100*5+10*5*50 = 7500。若按A1(A2A3)计算,则总共需要100*5*50+10*100*50 = 75000次数乘。

现在你的任务是对于一个确定的矩阵连乘方案,计算其需要的数乘次数。

Input

输入数据由多组数据组成。每组数据格式如下:
第一行是一个整数n (1≤n≤26),表示矩阵的个数。
接下来n行,每行有一个大写字母,表示矩阵的名字,后面有两个整数a,b,分别表示该矩阵的行数和列数,其中1<a,b<100。
第n+1行是一个矩阵连乘的表达式,由括号与大写字母组成,没有乘号与多余的空格。如果表达式中没有括号则按照从左到右的顺序计算,输入的括号保证能够配对。

Output

对于每组数据,输出仅一行包含一个整数,即将该矩阵连乘方案需要的数乘次数。如果运算过程中出现不满足矩阵乘法法则的情况(即左矩阵列数与右矩阵的行数不同),则输出“error”。

Sample Input

3 A 10 100 B 100 5 C 5 50 A(BC)

Sample Output

75000

Source

FZUPC 2005

Submit  Back  Status  Discuss